泰山之管穿石,单极之绠断干。水非石之钻,索非木之锯,渐靡使之然也。
——东汉·班固《汉书·枚乘传》
本文封面为Rocky Ⅱ中Rocky下定决心比赛后,早晨疯狂锻炼的场景。有了目标,便要不顾风雨兼程。
楔子
前两天看到 blackpenredpen曹老师 的视频,有感触,觉得对于数学的学习而言,刷题中才能真正学会东西。有些东西,看了不一定理解,理解了不一定会应用,用了不一定真正掌握。做题能很好的杂糅这一切,让理解更深入,记忆更加清晰。
时间线
收集到22个,感觉没得写了。早上偶然看到mdnice群里有人发导数的笔记,然后又翻到了他之前的极限笔记。然而,笔记里第一题我都做的吃力,NND,再看才知晓是Wu老的高数17天。然后找来翻了翻,光极限就讲了57页😮,当然里面方法还是基本方法,但很多都是“稍稍”延伸了几步,却足以让我手足无措。这两天不能放松,好好理理思路。
利用泰勒展开式推导出所有常见无穷小(4 → 50)
初出茅庐
这一部分有27道例题,主要介绍极限计算的基本方法。
n→∞lim n2+11+n2+21+…n2+n1
bg
提示:利用夹逼定理(🗣️哪—里—跑—)
n2+11∗n≤bn≤n2+n1∗n
quation}
\lim _{x \rightarrow 0} \frac{\ln \left(1+4 x^{2}\right)}{\sin x^{2}}
\end
<!−−swig2−−>
\befolding_{x \rightarrow 0} x^{3} \sin \frac{1}{x^{3}}
\end
<!−−swig3−−>
bg
提示:注意等价无穷小的条件
folding, x3为无穷小,∣sin1x3∣≤1无穷小与有界变量的乘积仍为无穷小∴limx→0x3sin1x3=0folding,\ x^3\text{为无穷小},|\sin{\frac{1}{x^3}}|\le 1 \\ {\color{blue} \text{无穷小与有界变量的乘积仍为无穷小}}\\ \therefore \lim _{x \rightarrow 0} x^{3} \sin \frac{1}{x^{3}}= 0folding, x3为无穷小,∣sinx31∣≤1无穷小与有界变量的乘积仍为无穷小∴x→0limx3sinx31=0
<!−−swig3−−>
\beginfolding_{x \rightarrow 0} \frac{\sin x-\tan x}{x^{3}}
\end
<!−−swig4−−>
bg
提示:拼凑等价无穷小
\befoldinglim _{x \rightarrow 0} \frac{\sin x-\tan x}{x^{3}}\\ &=\lim _{x \rightarrow 0} \frac{\sin x\left(1-\frac{1}{\cos x}\right)}{x^{3}} \\ &=\lim _{x \rightarrow 0} \frac{\sin x(\cos x-1)}{x^{3} \cos x} \\ &=\lim _{x \rightarrow 0} \frac{x \cdot\left(-\frac{1}{2} x^{2}\right)}{x^{3}}\\ &=-\frac{1}{2}\end{aligned}
<!−−swig4−−>
\begin{equation}
\lim _{x \rightarrow 0}\left(1+x e{x}\right){\frac{1}{x}}
\end
<!−−swig5−−>
bg
提示:1∞1^\infty1∞常规思路·第一弹
limx→0(1+🥕)1🥕=e(🥕≠0)\lim_{x\to 0} (1+🥕)^{\frac{1}{🥕}}=e \quad{(🥕\ne0)}x→0lim(1+🥕)🥕1=e(🥕=0)
<!−−swig5−−>
\begin{equation}
\lim _{x \rightarrow 0}\left(\frac{1-\tan x}{1+\tan x}\right)^{\frac{1}{-\sin 2 x}}
\end
<!−−swig6−−>
bg
提示:1∞1^\infty1∞常规思路·第二弹
limx→0(1−tanx1+tanx)1−sin2x=limx→0(1+(1−tanx1+tanx−1))11−tanx1+tanx−1×−2tanx1+tanx1−sin2x=limx→0e−2tanx1+tanx1−sin2x=limx→0e−2x1+tanx1−2x=limx→0e11+tanx=e\begin{aligned}&\lim _{x \rightarrow 0}\left(\frac{1-\tan x}{1+\tan x}\right)^{\frac{1}{-\sin 2 x}}\\&=\lim _{x \rightarrow 0}\left(1+(\frac{1-\tan x}{1+\tan x}-1)\right)^{\frac{1}{\frac{1-\tan x}{1+\tan x}-1}\times \frac{-2\tan x}{1+\tan x}\frac{1}{-\sin 2 x}}\\&=\lim _{x \rightarrow 0}e^{ \frac{-2\tan x}{1+\tan x}\frac{1}{-\sin 2 x}}\\&=\lim _{x \rightarrow 0}e^{ \frac{-2 x}{1+\tan x}\frac{1}{- 2 x}}\\&=\lim _{x \rightarrow 0}e^{ \frac{1}{1+\tan x}}\\&=e\end{aligned}x→0lim(1+tanx1−tanx)−sin2x1=x→0lim(1+(1+tanx1−tanx−1))1+tanx1−tanx−11×1+tanx−2tanx−sin2x1=x→0lime1+tanx−2tanx−sin2x1=x→0lime1+tanx−2x−2x1=x→0lime1+tanx1=e
<!−−swig6−−>
\begin{equation}
\lim_{n\to \infty} (\sqrt{n^2+n}-n)
\end
<!−−swig7−−>
bg
提示:常规思路:平方差拼凑
limn→∞(n2+n−n)=limn→∞(n2+n−n1)=limn→∞(n2+n−n2n2+n+n)=limn→∞(nn2+n+n)=limn→∞(11+1n+1)=12\begin{aligned}&\lim_{n\to \infty} (\sqrt{n^2+n}-n)\\&=\lim_{n\to \infty} (\frac{\sqrt{n^2+n}-n}{1})\\&=\lim_{n\to \infty} (\frac{n^2+n-n^2}{\sqrt{n^2+n}+n)}\\&=\lim_{n\to \infty} (\frac{n}{\sqrt{n^2+n}+n)}\\&=\lim_{n\to \infty} (\frac{1}{\sqrt{1+\frac{1}{n}}+1})\\&=\frac{1}{2}\\\end{aligned}n→∞lim(n2+n−n)=n→∞lim(1n2+n−n)=n→∞lim(n2+n+n)n2+n−n2=n→∞lim(n2+n+n)n=n→∞lim(1+n1+11)=21
<!−−swig7−−>
\begin{equation}
\lim_{x\to \infty} \sqrt{x}(\sqrt{x+2}-\sqrt{x-3})
\end
<!−−swig8−−>
bg
提示:常规思路:平方差拼凑
limx→∞x(x+2−x−3)=limx→∞x(x+2−x−3)1=limx→∞x×5x+2+x−3)=limx→∞51+2/x+1−3/x)=52\begin{aligned}&\lim_{x\to \infty} \sqrt{x}(\sqrt{x+2}-\sqrt{x-3})\\&=\lim_{x\to \infty} \frac{\sqrt{x}(\sqrt{x+2}-\sqrt{x-3})}{1}\\&=\lim_{x\to \infty} \frac{\sqrt{x}\times 5}{\sqrt{x+2}+\sqrt{x-3})}\\&=\lim_{x\to \infty} \frac{ 5}{\sqrt{1+2/x}+\sqrt{1-3/x})}\\&=\frac{5}{2}\end{aligned}x→∞limx(x+2−x−3)=x→∞lim1x(x+2−x−3)=x→∞limx+2+x−3)x×5=x→∞lim1+2/x+1−3/x)5=25
<!−−swig8−−>
\begin{equation}
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)
\end
<!−−swig9−−>
bg
提示:凑乘积形式,等价无穷小+洛必达
limx→0(1x−1ex−1)=limx→0(ex−1−x(ex−1)x)=limx→0(ex−1−xx2)=limx→0(ex−12x)=limx→0(ex2)=12\begin{aligned} &\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)\\ &=\lim _{x \rightarrow 0}\left(\frac{e^x-1-x}{(e^x-1)x}\right)\\ &=\lim _{x \rightarrow 0}\left(\frac{e^x-1-x}{x^2}\right)\\ &=\lim _{x \rightarrow 0}\left(\frac{e^x-1}{2x}\right)\\ &=\lim _{x \rightarrow 0}\left(\frac{e^x}{2}\right)\\ &=\frac{1}{2}\end{aligned}x→0lim(x1−ex−11)=x→0lim((ex−1)xex−1−x)=x→0lim(x2ex−1−x)=x→0lim(2xex−1)=x→0lim(2ex)=21
<!−−swig9−−>
\begin{equation}
\lim_{x\to 0} \frac{(x-\sin x) e{-x2}}{\sqrt{1-x^3}-1}
\end
<!−−swig10−−>
bg
提示:等价无穷小替换
(1+🥕)a−1∼a🥕(1+🥕)^a-1 \sim a🥕(1+🥕)a−1∼a🥕
limx→0(x−sinx)e−x21−x3−1=limx→0e−x2×limx→0x−sinx1/2×(−x3)=−2×limx→0x−sinxx3洛必达法则=−2×limx→01−cosx3x2=−2×limx→01/2×x23x2=−13\begin{aligned}&\lim_{x\to 0} \frac{(x-\sin x) e^{-x^2}}{\sqrt{1-x^3}-1}\\&= \lim_{x\to 0} e^{-x^2}\times \lim_{x\to 0} \frac{x-\sin x}{1/2\times (-x^3)}\\&= -2\times \lim_{x\to 0} \frac{x-\sin x}{x^3}\qquad \text{洛必达法则}\\&= -2\times \lim_{x\to 0} \frac{1-\cos x}{3x^2}\\&= -2\times \lim_{x\to 0} \frac{1/2 \times x^2}{3x^2}\\&=- \frac{1}{3}\end{aligned}x→0lim1−x3−1(x−sinx)e−x2=x→0lime−x2×x→0lim1/2×(−x3)x−sinx=−2×x→0limx3x−sinx洛必达法则=−2×x→0lim3x21−cosx=−2×x→0lim3x21/2×x2=−31
<!−−swig10−−>
\begin{equation}
\lim_{x\to 0} \frac{x-\sin 2x}{x + \sin 5x}
\end
<!−−swig11−−>
bg
提示:加减法使用等价无穷小的条件
∵\because∵ 当 x→0x \rightarrow 0x→0 时, sin2x∼2x,sin5x∼5x\sin 2 x \sim 2 x, \sin 5 x \sim 5 xsin2x∼2x,sin5x∼5x, 且 limx→0sin2xx\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}limx→0xsin2x =2≠1,limx→0sin5xx=5≠−1=2 \neq 1, \lim _{x \rightarrow 0} \frac{\sin 5 x}{x}=5 \neq-1=2=1,limx→0xsin5x=5=−1,
满足等价无穷小替换对加减法成立的条件,
∴limx→0x−sin2xx+sin5x=limx→0x−2xx+5x=−16\therefore \lim _{x \rightarrow 0} \frac{x-\sin 2 x}{x+\sin 5 x}=\lim _{x \rightarrow 0} \frac{x-2 x}{x+5 x}=-\frac{1}{6}∴x→0limx+sin5xx−sin2x=x→0limx+5xx−2x=−61
<!−−swig11−−>
\begin{equation}
\lim _{x \rightarrow \infty}\left(\cos \frac{1}{x}\right){x{2}}
\end
<!−−swig12−−>
bg
提示:1∞1^{\infty}1∞型·第三弹
limx→∞(cos1x)x2=limx→∞[1+(1cosx−1)]11cosx−1×(1cosx−1)×x2=elimx→∞(cos1x−1)x2=elimx→∞cos1x−1(1x)2=elimx→∞−12(1x)2(−1x)2=e−12=1e\begin{aligned}&\displaystyle \lim _{x \rightarrow \infty}\left(\cos \frac{1}{x}\right)^{x^{2}}\\&=\displaystyle\lim_{x\to \infty}[1+(\frac{1}{\cos x}-1)]^{\frac{1}{\frac{1}{\cos x}-1}\times (\frac{1}{\cos x}-1)\times x^2}\\&=e^{\displaystyle\lim_{x\to \infty}\left(\cos \frac{1}{x}-1\right) x^{2}}\\&=e^{\displaystyle\lim_{x\to \infty} \frac{\cos \frac{1}{x}-1}{\left(\frac{1}{x}\right)^{2}}}\\&=e^{\displaystyle\lim_{x\to \infty} \frac{-\frac{1}{2}\left(\frac{1}{x}\right)^{2}}{\left(-\frac{1}{x}\right)^{2}}}\\&=e^{^{-\frac{1}{2}}}\\&=\frac{1}{\sqrt{e}}\end{aligned}x→∞lim(cosx1)x2=x→∞lim[1+(cosx1−1)]cosx1−11×(cosx1−1)×x2=ex→∞lim(cosx1−1)x2=ex→∞lim(x1)2cosx1−1=ex→∞lim(−x1)2−21(x1)2=e−21=e1
<!−−swig12−−>
\begin{equation}
\lim _{x \rightarrow \infty} \frac{(x+a){x+a}(x+b){x+b}}{(x+a+b)^{2 x+a+b}}
\end
<!−−swig13−−> bg
提示:1∞1^{\infty}1∞型·第四弹
limx→∞(x+a)x+a(x+b)x+b(x+a+b)2x+a+b=limx→∞(x+a)x+a(x+a+b)x+a⋅(x+b)x+b(x+a+b)x+b=limx→∞1(1+bx+a)x+a⋅1(1+ax+b)x+b=1eb⋅1ea=e−(a+b)\begin{aligned}&\lim _{x \rightarrow \infty} \frac{(x+a)^{x+a}(x+b)^{x+b}}{(x+a+b)^{2 x+a+b}}\\&=\lim _{x \rightarrow \infty} \frac{(x+a)^{x+a}}{(x+a+b)^{x+a}} \cdot \frac{(x+b)^{x+b}}{(x+a+b)^{x+b}} \\&=\lim _{x \rightarrow \infty} \frac{1}{\left(1+\frac{b}{x+a}\right)^{x+a}} \cdot \frac{1}{\left(1+\frac{a}{x+b}\right)^{x+b}} \\&=\frac{1}{\mathrm{e}^{b}} \cdot \frac{1}{\mathrm{e}^{a}} \\&=\mathrm{e}^{-(a+b)}\end{aligned}x→∞lim(x+a+b)2x+a+b(x+a)x+a(x+b)x+b=x→∞lim(x+a+b)x+a(x+a)x+a⋅(x+a+b)x+b(x+b)x+b=x→∞lim(1+x+ab)x+a1⋅(1+x+ba)x+b1=eb1⋅ea1=e−(a+b)
<!−−swig13−−>
\begin{equation}
\lim _{x \rightarrow 0}\left[\frac{\ln (x+\sqrt{1+x{2}})}{x}\right]{\frac{1}{1-\cos x}}
\end
<!−−swig14−−> bg
提示:1∞1^{\infty}1∞型·第五弹,常规思路
limx→0[ln(x+1+x2)x]11−cosx=limx→0[1+ln(x+1+x2)−xx]11−cosx=limx→0eln(x+1+x2)−xx(1−cosx)幂化简:limx→0ln(x+1+x2)−xx⋅12x2=limx→011+x2−132x2=limx→0−12x232x2=−13原式=e−13\begin{aligned}&\lim _{x \rightarrow 0}\left[\frac{\ln \left(x+\sqrt{1+x^{2}}\right)}{x}\right]^{\frac{1}{1-\cos x}}\\&=\lim _{x \rightarrow 0}\left[1+\frac{\ln \left(x+\sqrt{1+x^{2}}\right)-x}{x}\right]^{\frac{1}{1-\cos x}} \\&=\lim _{x \rightarrow 0} e^{\frac{\ln (x + \sqrt{1+x^2})-x}{x(1-\cos x )}}\\\text{幂化简:}&\color{blue}\lim _{x \rightarrow 0} \frac{\ln \left(x+\sqrt{1+x^{2}}\right)-x}{x \cdot \frac{1}{2} x^{2}} \\&\color{blue}=\lim _{x \rightarrow 0} \frac{\frac{1}{\sqrt{1+x^{2}}}-1}{\frac{3}{2} x^{2}} \\&\color{blue}=\lim _{x \rightarrow 0} \frac{-\frac{1}{2} x^{2}}{\frac{3}{2} x^{2}}\\&\color{blue}=-\frac{1}{3}\\\text{原式}&=e^{-\frac{1}{3}}\\\end{aligned}幂化简:原式x→0lim[xln(x+1+x2)]1−cosx1=x→0lim[1+xln(x+1+x2)−x]1−cosx1=x→0limex(1−cosx)ln(x+1+x2)−xx→0limx⋅21x2ln(x+1+x2)−x=x→0lim23x21+x21−1=x→0lim23x2−21x2=−31=e−31
<!−−swig14−−>
\begin{equation}
\lim _{n \rightarrow \infty}\left(\frac{\pi}{2}-\arctan n\right)^{\frac{1}{\ln n}}
\end
<!−−swig15−−> bg
提示:1∞1^{\infty}1∞型·变体,思路还是一样的,幂运算变乘法
limn→∞(π2−arctann)1lnn=limn→∞eln(π/2−arctanx)lnx幂化简:limn→∞ln(π/2−arctanx)lnx=limx→+∞1π2−arctanx⋅(−11+x2)1x=−limx→+∞1xπ2−arctanx=−limx→+∞−1x2−11+x2=−1原式=e−1\begin{aligned}&\lim _{n \rightarrow \infty}\left(\frac{\pi}{2}-\arctan n\right)^{\frac{1}{\ln n}}\\&=\lim _{n \rightarrow \infty}e^{\frac{\ln (\pi /2 - \arctan x)}{\ln x}}\\\text{幂化简:}&\color{blue}\lim _{n \rightarrow \infty} \frac{\ln (\pi /2 - \arctan x)}{\ln x}\\&\color{blue}=\lim _{x \rightarrow+\infty} \frac{\frac{1}{\frac{\pi}{2}-\arctan x} \cdot\left(-\frac{1}{1+x^{2}}\right)}{\frac{1}{x}}\\&\color{blue}=-\lim _{x \rightarrow+\infty} \frac{\frac{1}{x}}{\frac{\pi}{2}-\arctan x} \\&\color{blue}=-\lim _{x \rightarrow+\infty} \frac{-\frac{1}{x^{2}}}{-\frac{1}{1+x^{2}}}\\&\color{blue}=-1\\\text{原式}&=e^{-1}\\\end{aligned}幂化简:原式n→∞lim(2π−arctann)lnn1=n→∞limelnxln(π/2−arctanx)n→∞limlnxln(π/2−arctanx)=x→+∞limx12π−arctanx1⋅(−1+x21)=−x→+∞lim2π−arctanxx1=−x→+∞lim−1+x21−x21=−1=e−1
<!−−swig15−−>
\begin{equation}
\lim_{x\to 0} \frac{1-\cos^2x-\frac{1}{2} x \sin 2x}{x2(e-1)}
\end
<!−−swig16−−>
bg
提示:多次使用洛必达法则
limx→01−cos2x−12xsin2xx2(ex2−1)=limx→01−cos2x−12xsin2xx2×x2上下都趋近于0,使用洛必达法则=limx→02cosxsinx−12sin2x−cos2x×x4x3=limx→012sin2x−cos2x×x4x3上下都趋近于0,使用洛必达法则=limx→0cos2x−cos2x+sin2x×2x12x2=limx→02x×2x12x2=13\begin{aligned}&\displaystyle \lim_{x\to 0} \frac{1-\cos^2x-\frac{1}{2} x \sin 2x}{x^2(e^{x^2}-1)}\\&=\displaystyle \lim_{x\to 0} \frac{1-\cos^2x-\frac{1}{2} x \sin 2x}{x^2\times x^2}\qquad \text{上下都趋近于0,使用洛必达法则}\\&=\displaystyle \lim_{x\to 0} \frac{2\cos x\sin x-\frac{1}{2}\sin 2x-\cos 2x\times x}{4x^3}\\&=\displaystyle \lim_{x\to 0} \frac{\frac{1}{2}\sin 2x-\cos 2x\times x}{4x^3}\qquad \text{上下都趋近于0,使用洛必达法则}\\&=\displaystyle \lim_{x\to 0} \frac{\cos 2x-\cos 2x+\sin 2x\times 2 x}{12x^2}\\&=\displaystyle \lim_{x\to 0} \frac{ 2x\times 2 x}{12x^2}\\&=\frac{1}{3}\end{aligned}x→0limx2(ex2−1)1−cos2x−21xsin2x=x→0limx2×x21−cos2x−21xsin2x上下都趋近于0,使用洛必达法则=x→0lim4x32cosxsinx−21sin2x−cos2x×x=x→0lim4x321sin2x−cos2x×x上下都趋近于0,使用洛必达法则=x→0lim12x2cos2x−cos2x+sin2x×2x=x→0lim12x22x×2x=31
<!−−swig16−−>
\begin{equation}
\lim _{x\to 0}(\frac{1}{x2}-\frac{1}{\sin2x})
\end
<!−−swig17−−>
bg
提示:多次使用洛必达法则
limx→0(1x2−1sin2x)=limx→0sin2x−x2x2sin2x上下都趋近于0,使用洛必达法则=limx→0sin2x−2x4x3上下都趋近于0,使用洛必达法则=limx→02cos2x−212x2=limx→0cos2x−16x2=limx→012(2x)26x2=13\begin{aligned}&\displaystyle\lim _{x\to 0}(\frac{1}{x^2}-\frac{1}{\sin^2x})\\ &=\displaystyle\lim _{x\to 0}\frac{\sin^2x-x^2}{x^2 \sin^2x}\qquad \text{上下都趋近于0,使用洛必达法则}\\ &=\displaystyle\lim _{x\to 0}\frac{\sin 2x-2x}{4x^3}\qquad \text{上下都趋近于0,使用洛必达法则} \\&=\displaystyle\lim _{x\to 0}\frac{2\cos 2x-2}{12x^2} \\&=\displaystyle\lim _{x\to 0}\frac{\cos 2x-1}{6x^2} \\&=\displaystyle\lim _{x\to 0}\frac{\frac{1}{2} (2x)^2}{6x^2}\\&=\frac{1}{3}\end{aligned}x→0lim(x21−sin2x1)=x→0limx2sin2xsin2x−x2上下都趋近于0,使用洛必达法则=x→0lim4x3sin2x−2x上下都趋近于0,使用洛必达法则=x→0lim12x22cos2x−2=x→0lim6x2cos2x−1=x→0lim6x221(2x)2=31
<!−−swig17−−>
\begin{equation}
\lim _{x \rightarrow 0} (\frac{\cos x}{\cos 2x}){\frac{1}{x2}}
\end
<!−−swig18−−>
bg
提示:等价无穷小之 加不反
limx→0(cosxcos2x)1x2=elimx→0(cosxcos2x−1)x2=elimx→0cosx−cos2xx2cos2x=elimx→0cosx−cos2xx2=elimx→0−sinx+2sin2x2x∵limx→0−sinx2sin2x≠−1=e32\begin{aligned}&\lim _{x \rightarrow 0} (\frac{\cos x}{\cos 2x})^{\frac{1}{x^2}}\\&=\mathrm{e}^{\displaystyle \lim_{x\to 0} \frac{\left(\frac{\cos x}{\cos 2 x}-1\right)}{x^{2}}}\\&=\mathrm{e}^{\displaystyle \lim_{x\to 0} \frac{\cos x-\cos 2x}{x^2 \cos 2 x}}\\&=\mathrm{e}^{\displaystyle \lim_{x\to 0} \frac{\cos x-\cos 2x}{x^2 }}\\&=\mathrm{e}^{\displaystyle \lim_{x\to 0} \frac{-\sin x+2 \sin 2 x}{2 x}}\qquad \because \lim_{x\to 0}\frac{-\sin x}{2\sin 2x}\ne -1\\&=\mathrm{e}^{\frac{3}{2}} \end{aligned}x→0lim(cos2xcosx)x21=ex→0limx2(cos2xcosx−1)=ex→0limx2cos2xcosx−cos2x=ex→0limx2cosx−cos2x=ex→0lim2x−sinx+2sin2x∵x→0lim2sin2x−sinx=−1=e23
<!−−swig18−−>
\begin{equation}
\lim _{x \rightarrow 0} \frac{[\sin x-\sin (\sin x)] \cdot \sin x}{x^{4}}
\end
<!−−swig19−−>
bg
提示:等价无穷小+洛必达法则
limx→0[sinx−sin(sinx)]⋅sinxx4=limx→0cosx−cos(sinx)⋅cosx3x2=limx→0cosx×limx→01−cos(sinx)3x2=limx→012sin2x3x2=limx→01x26x2=16\begin{aligned}&\lim _{x \rightarrow 0} \frac{[\sin x-\sin (\sin x)] \cdot \sin x}{x^{4}} \\&=\lim _{x \rightarrow 0} \frac{\cos x-\cos (\sin x) \cdot \cos x}{3 x^{2}} \\&=\lim _{x \rightarrow 0} \cos x \times \lim _{x \rightarrow 0} \frac{1-\cos (\sin x)}{3 x^{2}} \\&=\lim _{x \rightarrow 0} \frac{\frac{1}{2} \sin ^{2} x}{3 x^{2}} \\&=\lim _{x \rightarrow 0} \frac{1 x^{2}}{6 x^{2}} \\&=\frac{1}{6}\end{aligned}x→0limx4[sinx−sin(sinx)]⋅sinx=x→0lim3x2cosx−cos(sinx)⋅cosx=x→0limcosx×x→0lim3x21−cos(sinx)=x→0lim3x221sin2x=x→0lim6x21x2=61
<!−−swig19−−>
\begin{equation}
\text{求正的常数a与b,使下式成立:}
\lim {x \rightarrow 0} \frac{1}{b x-\sin x} \int^{x} \frac{t{2}}{\sqrt{a+t{2}}} d t=1
\end
<!−−swig20−−>
bg
提示:洛必达+等价无穷小,看见积分,必定洛必达。
limx→01bx−sinx∫0xt2a+t2dt=1limx→0x2a+x2b−cosx=1limx→01a+x2×limx→0x2b−cosx=11a×limx→0x2b−cosx=1🥝1a×limx→01bx21−1bcosx=11a×limx→01bx212bx2−1b+1=11a×2=1a=4(a=4→🥝)⟹b=1\begin{aligned} \lim _{x \rightarrow 0} \frac{1}{b x-\sin x} \int_{0}^{x} \frac{t^{2}}{\sqrt{a+t^{2}}} d t&=1\\ \lim _{x \rightarrow 0}\frac{ \frac{x^{2}}{\sqrt{a+x^{2}}} }{ {b -\cos x}}&=1\\\lim _{x \rightarrow 0} \frac{1}{\sqrt{a+x^{2}}}\times \lim _{x \rightarrow 0}\frac{ x^{2} }{ {b -\cos x}}&=1\\\frac{1}{\sqrt{a}}\times \lim _{x \rightarrow 0}\frac{ x^{2} }{ {b -\cos x}}&=1\qquad \text{🥝}\\\frac{1}{\sqrt{a}}\times \lim _{x \rightarrow 0}\frac{1}{b} \frac{ x^{2} }{ {1 -\frac{1}{b}\cos x}}&=1\\\frac{1}{\sqrt{a}}\times \lim _{x \rightarrow 0}\frac{1}{b} \frac{ x^{2} }{ \frac{1}{2b}x^2-\frac{1}{b}+1}&=1\\\frac{1}{\sqrt{a}}\times2&=1\\a&=4\\(a=4\to\text{🥝})\Longrightarrow b&=1\end{aligned}x→0limbx−sinx1∫0xa+t2t2dtx→0limb−cosxa+x2x2x→0lima+x21×x→0limb−cosxx2a1×x→0limb−cosxx2a1×x→0limb11−b1cosxx2a1×x→0limb12b1x2−b1+1x2a1×2a(a=4→🥝)⟹b=1=1=1=1🥝=1=1=1=4=1
<!−−swig20−−>
\begin{equation}
\lim {x \rightarrow 0} \frac{\int^{x}(x-t) \sin t^{2} \mathrm{~d} t}{\left(x{2}+x\right)\left(1-\sqrt{1-x^{2}}\right)}
\end
<!−−swig21−−> bg
提示:看见积分,必定洛必达,但也要注意顺序。
limx→0∫0x(x−t)sint2 dt(x2+x3)(1−1−x2)=limx→0x∫0xsint2 dt−∫0xtsint2 dt(x2+x3)⋅12x2=limx→0x∫0xsint2 dt−∫0xtsint2 dt12x4快使用洛必达,哼哼哈嘿!=limx→0∫0xsint2 dt+xsinx2−xsinx22x3=limx→0sinx26x2=16\begin{aligned}&\lim _{x \rightarrow 0} \frac{\int_{0}^{x}(x-t) \sin t^{2} \mathrm{~d} t}{\left(x^{2}+x^{3}\right)\left(1-\sqrt{1-x^{2}}\right)}\\&=\lim _{x \rightarrow 0} \frac{x \int_{0}^{x} \sin t^{2} \mathrm{~d} t-\int_{0}^{x} t \sin t^{2} \mathrm{~d} t}{\left(x^{2}+x^{3}\right) \cdot \frac{1}{2} x^{2}} \\&=\lim _{x \rightarrow 0} \frac{ x \int_{0}^{x} \sin t^{2} \mathrm{~d} t- \int_{0}^{x} t \sin t^{2} \mathrm{~d} t}{\frac{1}{2} x^{4}} \quad \text{快使用洛必达,哼哼哈嘿!} \\&=\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \sin t^{2} \mathrm{~d} t+x \sin x^{2}-x \sin x^{2}}{2 x^{3}} \\&=\lim _{x \rightarrow 0} \frac{\sin x^{2}}{6 x^{2}}\\&=\frac{1}{6} \end{aligned}x→0lim(x2+x3)(1−1−x2)∫0x(x−t)sint2 dt=x→0lim(x2+x3)⋅21x2x∫0xsint2 dt−∫0xtsint2 dt=x→0lim21x4x∫0xsint2 dt−∫0xtsint2 dt快使用洛必达,哼哼哈嘿!=x→0lim2x3∫0xsint2 dt+xsinx2−xsinx2=x→0lim6x2sinx2=61
<!−−swig21−−>
\begin{equation}
\lim _{x \rightarrow 0}\left[\frac{1}{e^{x}-1}-\frac{1}{\ln (1+x)}\right]
\end
<!−−swig22−−>
bg
提示:等价无穷小+洛必达法则
limx→0[1ex−1−1ln(1+x)]=limx→0ln(1+x)−ex+1(ex−1)ln(1+x)=limx→0ln(1+x)−ex+1x⋅x=limx→011+x−ex2x上下都趋近于0,使用洛必达法则=12limx→01−ex(1+x)x⋅limx→011+x=12limx→0(1−ex(1+x))′x′=−12limx→0(ex(2+x))=−1.\begin{aligned}&\lim _{x \rightarrow 0}\left[\frac{1}{\mathrm{e}^{x}-1}-\frac{1}{\ln (1+x)}\right]\\&=\lim _{x \rightarrow 0} \frac{\ln (1+x)-\mathrm{e}^{x}+1}{\left(\mathrm{e}^{x}-1\right) \ln (1+x)}\\&=\lim _{x \rightarrow 0} \frac{\ln (1+x)-\mathrm{e}^{x}+1}{x \cdot x} \\& = \lim _{x \rightarrow 0} \frac{\frac{1}{1+x}-\mathrm{e}^{x}}{2 x}\qquad \text{上下都趋近于0,使用洛必达法则} \\&=\frac{1}{2} \lim _{x \rightarrow 0} \frac{1-\mathrm{e}^{x}(1+x)}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{1+x}\\&=\frac{1}{2} \lim _{x \rightarrow 0} \frac{\left(1-\mathrm{e}^{x}(1+x)\right)^{\prime}}{x^{\prime}}\\&=-\frac{1}{2} \lim _{x \rightarrow 0}\left(\mathrm{e}^{x}(2+x)\right)\\&=-1 .\end{aligned}x→0lim[ex−11−ln(1+x)1]=x→0lim(ex−1)ln(1+x)ln(1+x)−ex+1=x→0limx⋅xln(1+x)−ex+1=x→0lim2x1+x1−ex上下都趋近于0,使用洛必达法则=21x→0limx1−ex(1+x)⋅x→0lim1+x1=21x→0limx′(1−ex(1+x))′=−21x→0lim(ex(2+x))=−1.
<!−−swig22−−>
\begin{equation}
\lim _{x \rightarrow 0} \frac{x^{2} \sin \frac{1}{x}}{x+\sin x}
\end
bg
提示:请不要用洛必达!!
简单分析一下,可以发现这是一个00\frac{0}{0}00型极限,要是你手痒痒直接用了,就会陷入绝境: 原式 =limx→02xsin1x−cos1x1+cosx\text { 原式 }=\lim _{x \rightarrow 0} \frac{2 x \sin \frac{1}{x}-\cos \frac{1}{x}}{1+\cos x} 原式 =limx→01+cosx2xsinx1−cosx1
实际上这道题的意义就是告诉你要注意洛必达的条件:求导后的极限存在才能用洛必达。
正解:原式 =limx→0xsin1x1+sinxx=02=0\text { 正解:原式 }=\lim _{x \rightarrow 0} \frac{x \sin \frac{1}{x}}{1+\frac{\sin x}{x}}=\frac{0}{2}=0 正解:原式 =x→0lim1+xsinxxsinx1=20=0
------
拉格朗日中值定理专区
> 如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可㝵,那么在开区间 $(a, b)$ 内至少存在一点 $\xi$ 使得 :
>
f^{\prime}(\xi)=\frac{f(b)-f(a)}
这个方法神奇的紧!这个方法神奇的紧!
这个方法神奇的紧!
limx→0cos(sinx)−cosxarcsin4x\begin{equation}
\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{\arcsin ^{4} x}
\end{equation}
x→0limarcsin4xcos(sinx)−cosx
bg
提示:
limx→0cos(sinx)−cosxarcsin4x=limx→0−sinξ⋅(sinx−x)x4\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{\arcsin ^{4} x}=\lim _{x \rightarrow 0} \frac{-\sin \xi \cdot(\sin x-x)}{x^{4}}x→0limarcsin4xcos(sinx)−cosx=x→0limx4−sinξ⋅(sinx−x)
ξ\xiξ介于sinx\sin xsinx 与xxx之间,由夹逼定理可以得到limx→0sinξx=1\lim_{x\to 0}\frac{\sin \xi}{x}=1limx→0xsinξ=1
limx→0cos(sinx)−cosxarcsin4x=limx→0−(sinx−x)x3=limx→01−cosx3x2=16\begin{aligned}&\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{\arcsin ^{4} x}\\&=\lim _{x \rightarrow 0} \frac{-(\sin x-x)}{x^{3}}\\&=\lim _{x \rightarrow 0} \frac{1-\cos x}{3 x^{2}}&\\&=\frac{1}{6}\\\end{aligned}x→0limarcsin4xcos(sinx)−cosx=x→0limx3−(sinx−x)=x→0lim3x21−cosx=61
驾轻就熟
limx→0[ax−(1x2−a2)ln(1+ax)](a≠0)\begin{equation}
\lim _{x \rightarrow 0}\left[\frac{a}{x}-\left(\frac{1}{x^{2}}-a^{2}\right) \ln (1+a x)\right](a \neq 0)
\end{equation}
x→0lim[xa−(x21−a2)ln(1+ax)](a=0)
bg
提示:等价无穷小推论
limx→0[ax−(1x2−a2)ln(1+ax)]=limx→0[ax−ln(1+ax)x2]+limx→0a2ln(1+ax)=limx→0ax−ln(1+ax)x2=limx→012(ax)2x2(🥕−ln(1+🥕)∼12🥕2)=a22.\begin{aligned}&\lim _{x \rightarrow 0}\left[\frac{a}{x}-\left(\frac{1}{x^{2}}-a^{2}\right) \ln (1+a x)\right]\\&=\lim _{x \rightarrow 0}\left[\frac{a}{x}-\frac{\ln (1+a x)}{x^{2}}\right]+\lim _{x \rightarrow 0} a^{2} \ln (1+a x) \\&=\lim _{x \rightarrow 0} \frac{a x-\ln (1+a x)}{x^{2}} \\&=\lim _{x \rightarrow 0} \frac{\frac{1}{2}(a x)^{2}}{x^{2}} {\color{red}\quad\left(🥕-\ln (1+🥕) \sim \frac{1}{2} 🥕^{2}\right)} \\&=\frac{a^{2}}{2} .\end{aligned}x→0lim[xa−(x21−a2)ln(1+ax)]=x→0lim[xa−x2ln(1+ax)]+x→0lima2ln(1+ax)=x→0limx2ax−ln(1+ax)=x→0limx221(ax)2(🥕−ln(1+🥕)∼21🥕2)=2a2.
limx→+∞[(nx)n+1]n+1(x+1)(x2+2)⋯(xn+n)\begin{equation}
\lim _{x \rightarrow+\infty} \frac{\sqrt{\left[(n x)^{n}+1\right]^{n+1}}}{(x+1)\left(x^{2}+2\right) \cdots\left(x^{n}+n\right)}
\end{equation}
x→+∞lim(x+1)(x2+2)⋯(xn+n)[(nx)n+1]n+1
bg
提示:找到相同的项,消消消,提取出来x,凑出来可以计算的无穷小。
limx→+∞[(nx)n+1]n+1(x+1)(x2+2)⋯(xn+n)=limx→+∞(nn+1xn)n+12(1+1x)(1+2x2)⋯(1+nxn)=nn(n+1)2\begin{aligned}&\lim _{x \rightarrow+\infty} \frac{\sqrt{\left[(n x)^{n}+1\right]^{n+1}}}{(x+1)\left(x^{2}+2\right) \cdots\left(x^{n}+n\right)}\\&=\lim _{x \rightarrow+\infty} \frac{\left(n^{n}+\frac{1}{x^{n}}\right)^{\frac{n+1}{2}}}{\left(1+\frac{1}{x}\right)\left(1+\frac{2}{x^{2}}\right) \cdots\left(1+\frac{n}{x^{n}}\right)}\\&=n^{\frac{n(n+1)}{2}}\end{aligned}x→+∞lim(x+1)(x2+2)⋯(xn+n)[(nx)n+1]n+1=x→+∞lim(1+x1)(1+x22)⋯(1+xnn)(nn+xn1)2n+1=n2n(n+1)
limx→0x2(ex−1)1+tanx−1+x\begin{equation}
\lim_{x\to 0} \frac{x^2(e^x-1)}{\sqrt{1+\tan x}-\sqrt{1+ x}}
\end{equation}
x→0lim1+tanx−1+xx2(ex−1)
bg
提示:泰勒展开式
tanx=∑n=1∞B2n(−4)n(1−4n)(2n)!x2n−1=x+13x3+215x5+17315x7+622835x9+1382155925x11+218446081075x13+929569638512875x15+⋯x∈(−1,1)\tan x=\sum_{n=1}^{\infty} \frac{B_{2 n}(-4)^{n}\left(1-4^{n}\right)}{(2 n) !} x^{2 n-1}=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7}+\frac{62}{2835} x^{9}+\frac{1382}{155925} x^{11}+\frac{21844}{6081075} x^{13}+\frac{929569}{638512875} x^{15}+\cdots x \in(-1,1)tanx=n=1∑∞(2n)!B2n(−4)n(1−4n)x2n−1=x+31x3+152x5+31517x7+283562x9+1559251382x11+608107521844x13+638512875929569x15+⋯x∈(−1,1)
limx→0x2(ex−1)1+tanx−1+x=limx→0x3×(1+tanx+1+x)tanx−x=limx→0x3×2tanx−x=limx→0x3×213x3=6\begin{aligned}&\lim_{x\to 0} \frac{x^2(e^x-1)}{\sqrt{1+\tan x}-\sqrt{1+ x}}\\&=\lim_{x\to 0} \frac{x^3\times(\sqrt{1+\tan x}+\sqrt{1+ x})}{\tan x-x}\\&=\lim_{x\to 0} \frac{x^3\times2}{\tan x-x}\\&=\lim_{x\to 0} \frac{x^3\times2}{\frac{1}{3}x^3}\\&=6\end{aligned}x→0lim1+tanx−1+xx2(ex−1)=x→0limtanx−xx3×(1+tanx+1+x)=x→0limtanx−xx3×2=x→0lim31x3x3×2=6
limx→04x2+x−1+x+1x2+sinx\begin{equation}
\lim_{x\to 0} \frac{\sqrt{4x^2+x-1}+x+1}{\sqrt{x^2+\sin x}}
\end{equation}
x→0limx2+sinx4x2+x−1+x+1
bg
提示:除以出现次数最多的,最讨厌的那一项。
limx→04x2+x−1+x+1x2+sinx=limx→∞4+1x−1x2+1+1x1+sinxx2=4+11=3\begin{aligned}&\lim_{x\to 0} \frac{\sqrt{4x^2+x-1}+x+1}{\sqrt{x^2+\sin x}}\\&=\lim _{x \rightarrow \infty} \frac{\sqrt{4+\frac{1}{x}-\frac{1}{x^{2}}}+1+\frac{1}{x}}{\sqrt{1+\frac{\sin x}{x^{2}}}}\\&=\frac{\sqrt{4}+1}{1}\\&=3 \\\end{aligned}x→0limx2+sinx4x2+x−1+x+1=x→∞lim1+x2sinx4+x1−x21+1+x1=14+1=3
limx→0∫0xtln(1+tsint)dt1−cosx2\begin{equation}
\lim _{x \rightarrow 0} \frac{\int_{0}^{x} t \ln (1+t \sin t) \mathrm{d} t}{1-\cos x^{2}}
\end{equation}
x→0lim1−cosx2∫0xtln(1+tsint)dt
bg
提示:判断极限类型+等价无穷小+洛必达法则
limx→0∫0xtln(1+tsint)dt1−cosx2=limx→0∫0xtln(1+tsint)x42=limx→0xln(1+xsinx)2x3=limx→0x(xsinx)2x3=12\begin{aligned}&\displaystyle \lim _{x \rightarrow 0} \frac{\int_{0}^{x} t \ln (1+t \sin t) \mathrm{d} t}{1-\cos x^{2}}\\&=\displaystyle \lim _{x \rightarrow 0} \frac{\int_{0}^{x} t \ln (1+t \sin t)}{\frac{x^4}{2}} \\&=\displaystyle \lim _{x \rightarrow 0} \frac{x \ln (1+x \sin x)}{2 x^{3}}\\&=\displaystyle\lim _{x \rightarrow 0} \frac{x(x \sin x)}{2 x^{3}}\\&=\frac{1}{2}\end{aligned}x→0lim1−cosx2∫0xtln(1+tsint)dt=x→0lim2x4∫0xtln(1+tsint)=x→0lim2x3xln(1+xsinx)=x→0lim2x3x(xsinx)=21
limx→+∞∫1x(t2(e1t−1)−t)dtx2ln(1+1x)\begin{equation}
\lim _{x \rightarrow+\infty} \frac{\int_{1}^{x}\left(t^{2}\left(\mathrm{e}^{\frac{1}{t}}-1\right)-t\right) \mathrm{d} t}{x^{2} \ln \left(1+\frac{1}{x}\right)}
\end{equation}
x→+∞limx2ln(1+x1)∫1x(t2(et1−1)−t)dt
bg
提示:判断极限类型+等价无穷小+洛必达法则
limx→+∞∫1x(t2(e1t−1)−t)dtx2ln(1+1x)=limx→+∞∫1x(t2(e1t−1)−t)dtx2⋅1x=limx→+∞(∫1x(t2(e1t−1)−t)dt)′(x)′=limx→+∞(x2(e1x−1)−x)令 t=1x=1xlimt→0+et−1−tt2上下都趋近于0,使用洛必达法则=limt→0+et−12t=12\begin{aligned}&\lim _{x \rightarrow+\infty} \frac{\int_{1}^{x}\left(t^{2}\left(\mathrm{e}^{\frac{1}{t}}-1\right)-t\right) \mathrm{d} t}{x^{2} \ln \left(1+\frac{1}{x}\right)}\\&=\lim _{x \rightarrow+\infty} \frac{\int_{1}^{x}\left(t^{2}\left(\mathrm{e}^{\frac{1}{t}}-1\right)-t\right) \mathrm{d} t}{x^{2} \cdot \frac{1}{x}}\\&=\lim _{x \rightarrow+\infty} \frac{\left(\int_{1}^{x}\left(t^{2}\left(\mathrm{e}^{\frac{1}{t}}-1\right)-t\right) \mathrm{d} t\right)^{\prime}}{(x)^{\prime}} \\&=\lim _{x \rightarrow+\infty}\left(x^{2}\left(\mathrm{e}^{\frac{1}{x}}-1\right)-x\right) \qquad \text{令}\ t=\frac{1}{x} \\&=\frac{1}{x} \lim _{t \rightarrow 0^{+}} \frac{\mathrm{e}^{t}-1-t}{t^{2}}\qquad \text{上下都趋近于0,使用洛必达法则} \\&=\lim _{t \rightarrow 0^{+}} \frac{\mathrm{e}^{t}-1}{2 t}\\&=\frac{1}{2}\end{aligned}x→+∞limx2ln(1+x1)∫1x(t2(et1−1)−t)dt=x→+∞limx2⋅x1∫1x(t2(et1−1)−t)dt=x→+∞lim(x)′(∫1x(t2(et1−1)−t)dt)′=x→+∞lim(x2(ex1−1)−x)令 t=x1=x1t→0+limt2et−1−t上下都趋近于0,使用洛必达法则=t→0+lim2tet−1=21
limn→∞nn2+n+1n(n+1)n(5n−1)\begin{equation}
\lim _{n \rightarrow \infty} \frac{n^{\frac{n^{2}+n+1}{n}}}{(n+1)^{n}}(\sqrt[n]{5}-1)
\end{equation}
n→∞lim(n+1)nnnn2+n+1(n5−1)
bg
提示:对数字敏感+对公式敏感+剥洋葱法
a🥕−1🥕∼lna\frac{ a^{🥕}-1}{🥕}\sim \ln a🥕a🥕−1∼lna
limn→∞nn2+n+1n(n+1)n(5n−1)=limn→∞nn+1⋅nn(n+1)n(5n−1)=limn→∞nn(n+1)n5−11/n=limn→∞1(1+1n)n⋅ln5=ln5e\begin{aligned}& \lim _{n \rightarrow \infty} \frac{n^{\frac{n^{2}+n+1}{n}}}{(n+1)^{n}}(\sqrt[n]{5}-1) \\=& \lim _{n \rightarrow \infty} \frac{n^{n+1} \cdot \sqrt[n]{n}}{(n+1)^{n}}(\sqrt[n]{5}-1) \\=& \lim _{n \rightarrow \infty} \frac{n^{n}}{(n+1)^{n}} \frac{\sqrt{5}-1}{1 / n} \\=& \lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}} \cdot \ln 5 \\=& \frac{\ln 5}{e}\end{aligned}====n→∞lim(n+1)nnnn2+n+1(n5−1)n→∞lim(n+1)nnn+1⋅nn(n5−1)n→∞lim(n+1)nnn1/n5−1n→∞lim(1+n1)n1⋅ln5eln5
limx→01ln(1+x2)−1sin2x\begin{equation}
\lim_{x\to 0}\frac{1}{\ln(1+x^2)}-\frac{1}{\sin^2x}
\end{equation}
x→0limln(1+x2)1−sin2x1
bg
提示:对平方差敏感!
=limx→0sin2x−ln(1+x2)sin2xln(1+x2)=limx→0sin2x−ln(1+x2)x4=limx→0(sin2x−x2)−[ln(1+x2)−x2]x4=limx→0(sinx+x)(sinx−x)x4−limx→0−12x4x4=limx→0(2x)(−16x3)x4+12=−13+12=16\begin{aligned}&=\lim _{x \rightarrow 0} \frac{\sin ^{2} x-\ln \left(1+x^{2}\right)}{\sin ^{2} x \ln \left(1+x^{2}\right)} \\&=\lim _{x \rightarrow 0} \frac{\sin ^{2} x-\ln \left(1+x^{2}\right)}{x^{4}} \\&=\lim _{x \rightarrow 0} \frac{\left(\sin ^{2} x-x^{2}\right)-\left[\ln \left(1+x^{2}\right)-x^{2}\right]}{x^{4}} \\&=\lim _{x \rightarrow 0} \frac{(\sin x+x)(\sin x-x)}{x^{4}}-\lim _{x \rightarrow 0} \frac{-\frac{1}{2} x^{4}}{x^{4}} \\&=\lim _{x \rightarrow 0} \frac{(2 x)\left(-\frac{1}{6} x^{3}\right)}{x^{4}}+\frac{1}{2} \\&=-\frac{1}{3}+\frac{1}{2}=\frac{1}{6}\end{aligned}=x→0limsin2xln(1+x2)sin2x−ln(1+x2)=x→0limx4sin2x−ln(1+x2)=x→0limx4(sin2x−x2)−[ln(1+x2)−x2]=x→0limx4(sinx+x)(sinx−x)−x→0limx4−21x4=x→0limx4(2x)(−61x3)+21=−31+21=61
泰勒级数求极限专用区
limx→01+x22−1+x2(cosx−ex2)sinx2\begin{equation}
\lim _{x \rightarrow 0} \frac{1+\frac{x^{2}}{2}-\sqrt{1+x^{2}}}{\left(\cos x-e^{x^{2}}\right) \sin x^{2}}
\end{equation}
x→0lim(cosx−ex2)sinx21+2x2−1+x2
bg
提示:基本泰勒展开式
1+x2=(1+x2)12=1+12x2+12(12−1)2!x4+o(x4)=1+12x2−18x4+o(x4)cosx=1−x22!+o(x2)=1−x22+o(x2)ex2=1+x2+o(x2)\begin{aligned}\sqrt{1+x^{2}} &=\left(1+x^{2}\right)^{\frac{1}{2}}=1+\frac{1}{2} x^{2}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2 !} x^{4}+o\left(x^{4}\right) \\&=1+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}+o\left(x^{4}\right) \\& \cos x=1-\frac{x^{2}}{2 !}+o\left(x^{2}\right)=1-\frac{x^{2}}{2}+o\left(x^{2}\right) \\\mathrm{e}^{x^{2}} &=1+x^{2}+o\left(x^{2}\right)\end{aligned}1+x2ex2=(1+x2)21=1+21x2+2!21(21−1)x4+o(x4)=1+21x2−81x4+o(x4)cosx=1−2!x2+o(x2)=1−2x2+o(x2)=1+x2+o(x2)
limx→01+x22−1+x2(cosx−ex2)sinx2=limx→01+x22−(1+12x2−18x4+o(x4))[(1−x22+o(x2))−(1+x2+o(x2))]x2=limx→018x4+o(x4)−32x4+o(x4)=−112\begin{aligned}&\lim _{x \rightarrow 0} \frac{1+\frac{x^{2}}{2}-\sqrt{1+x^{2}}}{\left(\cos x-e^{x^{2}}\right) \sin x^{2}}\\&=\lim _{x \rightarrow 0} \frac{1+\frac{x^{2}}{2}-\left(1+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}+o\left(x^{4}\right)\right)}{\left[\left(1-\frac{x^{2}}{2}+o\left(x^{2}\right)\right)-\left(1+x^{2}+o\left(x^{2}\right)\right)\right] x^{2}} \\&=\lim _{x \rightarrow 0} \frac{\frac{1}{8} x^{4}+o\left(x^{4}\right)}{-\frac{3}{2} x^{4}+o\left(x^{4}\right)}\\&=-\frac{1}{12} \end{aligned}x→0lim(cosx−ex2)sinx21+2x2−1+x2=x→0lim[(1−2x2+o(x2))−(1+x2+o(x2))]x21+2x2−(1+21x2−81x4+o(x4))=x→0lim−23x4+o(x4)81x4+o(x4)=−121
limn→∞[(n3−n2+n2)e1n−1+n6]\begin{equation}
\lim _{n \rightarrow \infty}\left[\left(n^{3}-n^{2}+\frac{n}{2}\right) \mathrm{e}^{\frac{1}{n}}-\sqrt{1+n^{6}}\right]
\end{equation}
n→∞lim[(n3−n2+2n)en1−1+n6]
bg
提示:无。😠这谁想得到啊!!!
limn→∞[(n3−n2+n2)e1n−1+n6]=limn→∞n3[(1−1n+12n2)e1∗−1+1n6]=limn→∞n3[(1−1n+12n2)−e−1n1+1n6]=limn→∞n3[(1−1n+12n2)−(1−1n+12n2−13!1n3+o(1n3))(1+o(1n3))]=16\begin{aligned}&\lim _{n \rightarrow \infty}\left[\left(n^{3}-n^{2}+\frac{n}{2}\right) \mathrm{e}^{\frac{1}{n}}-\sqrt{1+n^{6}}\right]\\&=\lim _{n \rightarrow \infty} n^{3}\left[\left(1-\frac{1}{n}+\frac{1}{2 n^{2}}\right) \mathrm{e}^{\frac{1}{*}}-\sqrt{1+\frac{1}{n^{6}}}\right] \\&\color{red}=\lim _{n \rightarrow \infty} n^{3}\left[\left(1-\frac{1}{n}+\frac{1}{2 n^{2}}\right)-\mathrm{e}^{-\frac{1}{n}} \sqrt{1+\frac{1}{n^{6}}}\right] \\&=\lim _{n \rightarrow \infty} n^{3}\left[\left(1-\frac{1}{n}+\frac{1}{2 n^{2}}\right)-\left(1-\frac{1}{n}+\frac{1}{2 n^{2}}-\frac{1}{3 !} \frac{1}{n^{3}}+o\left(\frac{1}{n^{3}}\right)\right)\left(1+o\left(\frac{1}{n^{3}}\right)\right)\right] \\&=\frac{1}{6}\end{aligned}n→∞lim[(n3−n2+2n)en1−1+n6]=n→∞limn3[(1−n1+2n21)e∗1−1+n61]=n→∞limn3[(1−n1+2n21)−e−n11+n61]=n→∞limn3[(1−n1+2n21)−(1−n1+2n21−3!1n31+o(n31))(1+o(n31))]=61
蓦然回首
limx→0(2+sinx2)x−2sinxx3\begin{equation}
\lim _{x \rightarrow 0} \frac{\left(2+\sin x^{2}\right)^{x}-2^{\sin x}}{x^{3}}
\end{equation}
x→0limx3(2+sinx2)x−2sinx
bg
提示:努力拼凑出来等价无穷小,提取相同的项,
limx→0(2+sinx2)x−2sinxx3=limx→0(2+sinx2)x−2xx3+limx→02x−2sinxx3=limx→02x[(1+sinx22)x−1]x3+limx→02sinx(2x−sinx−1)x3=limx→0sinx22⋅xx3+limx→0(x−sinx)ln2x3=limx→012x3x3+limx→0(16x3)ln2x3=12+ln26 =12+ln26\begin{aligned}&\lim _{x \rightarrow 0} \frac{\left(2+\sin x^{2}\right)^{x}-2^{\sin x}}{x^{3}}\\&=\lim _{x \rightarrow 0} \frac{\left(2+\sin x^{2}\right)^{x}-2^{x}}{x^{3}}+\lim _{x \rightarrow 0} \frac{2^{x}-2^{\sin x}}{x^{3}} \\&=\lim _{x \rightarrow 0} \frac{2^{x}\left[\left(1+\frac{\sin x^{2}}{2}\right)^{x}-1\right]}{x^{3}}+\lim _{x \rightarrow 0} \frac{2^{\sin x}\left(2^{x-\sin x}-1\right)}{x^{3}} \\&=\lim _{x \rightarrow 0} \frac{\frac{\sin x^{2}}{2} \cdot x}{x^{3}}+\lim _{x \rightarrow 0} \frac{(x-\sin x) \ln 2}{x^{3}} \\&=\lim _{x \rightarrow 0} \frac{\frac{1}{2} x^{3}}{x^{3}}+\lim _{x \rightarrow 0} \frac{\left(\frac{1}{6} x^{3}\right) \ln 2}{x^{3}} \\&=\frac{1}{2}+\frac{\ln 2}{6}\\\&=\frac{1}{2}+\ln \sqrt[6]{2} \end{aligned} x→0limx3(2+sinx2)x−2sinx=x→0limx3(2+sinx2)x−2x+x→0limx32x−2sinx=x→0limx32x[(1+2sinx2)x−1]+x→0limx32sinx(2x−sinx−1)=x→0limx32sinx2⋅x+x→0limx3(x−sinx)ln2=x→0limx321x3+x→0limx3(61x3)ln2=21+6ln2=21+ln62
limx→1x−xx1−x+lnx\begin{equation}
\lim _{x \rightarrow 1} \frac{x-x^{x}}{1-x+\ln x}
\end{equation}
x→1lim1−x+lnxx−xx
bg
提示:努力拼凑出来等价无穷小,提取相同的项,
用换元法把趋向于1的x转换成趋向于0的h,多次拼凑并利用等价无穷小。
limx→1x−xx1−x+lnx=limh→0(1+h)[1−(1+h)h]ln(1+h)−h=limh→0ehln(1+h)−1h−ln(1+h)=limh→0hln(1+h)h−ln(1+h)=limh→0h2h−ln(1+h)=limh→02h1−11+h=2limh→0(1+h)=2\begin{aligned}&\lim _{x \rightarrow 1} \frac{x-x^{x}}{1-x+\ln x} \\&=\lim _{h \rightarrow 0} \frac{(1+h)\left[1-(1+h)^{h}\right]}{\ln (1+h)-h} \\&=\lim _{h \rightarrow 0} \frac{e^{h \ln (1+h)}-1}{h-\ln (1+h)} \\&=\lim _{h \rightarrow 0} \frac{h \ln (1+h)}{h-\ln (1+h)} \\&=\lim _{h \rightarrow 0} \frac{h^{2}}{h-\ln (1+h)} \\&=\lim _{h \rightarrow 0} \frac{2 h}{1-\frac{1}{1+h}} \\&=2 \lim _{h \rightarrow 0}(1+h) \\&=2 \end{aligned}x→1lim1−x+lnxx−xx=h→0limln(1+h)−h(1+h)[1−(1+h)h]=h→0limh−ln(1+h)ehln(1+h)−1=h→0limh−ln(1+h)hln(1+h)=h→0limh−ln(1+h)h2=h→0lim1−1+h12h=2h→0lim(1+h)=2
往死里凑等价无穷小!!!
limx→1x−xx1−x+lnx=limx→1−x[e(x−1)lnx−1]ln[1+(x−1)]−(x−1)]=limx→1−(x−1)lnx−12(x−1)2=2limx→1(x−1)ln[1+(x−1)](x−1)2=2limx→1(x−1)2(x−1)2=2\begin{aligned}&\lim _{x \rightarrow 1} \frac{x-x^{x}}{1-x+\ln x} \\&=\lim _{x \rightarrow 1} \frac{-x\left[\mathrm{e}^{(x-1) \ln x}-1\right]}{\ln{[1+(x-1)]}-(x-1)]}\\&=\lim _{x \rightarrow 1} \frac{-(x-1) \ln x}{-\frac{1}{2}(x-1)^{2}} \\&=2 \lim _{x \rightarrow 1} \frac{(x-1) \ln {[1+(x-1)]}}{(x-1)^{2}}\\&= 2 \lim_{x\to 1} \frac{(x-1)^2}{(x-1)^2}\\&=2\\\end{aligned}x→1lim1−x+lnxx−xx=x→1limln[1+(x−1)]−(x−1)]−x[e(x−1)lnx−1]=x→1lim−21(x−1)2−(x−1)lnx=2x→1lim(x−1)2(x−1)ln[1+(x−1)]=2x→1lim(x−1)2(x−1)2=2
limx→+∞[x3+x2+x+13−x2+x+1ln(ex+x)x]\begin{equation}
\lim _{x \rightarrow+\infty}\left[\sqrt[3]{x^{3}+x^{2}+x+1}-\sqrt{x^{2}+x+1} \frac{\ln \left(\mathrm{e}^{x}+x\right)}{x}\right]
\end{equation}
x→+∞lim[3x3+x2+x+1−x2+x+1xln(ex+x)]
bg
提示:要先推演一番,才能做出来😂
limx→+∞ln(ex+x)x=limx→+∞ln[ex(1+xex)]x=1+limx→+∞ln(1+xex)x\color{blue} \lim _{x \rightarrow+\infty} \frac{\ln \left(\mathrm{e}^{x}+x\right)}{x}=\lim _{x \rightarrow+\infty} \frac{\ln \left[\mathrm{e}^{x}\left(1+\frac{x}{\mathrm{e}^{x}}\right)\right]}{x}=1+\lim _{x \rightarrow+\infty} \frac{\ln \left(1+\frac{x}{\mathrm{e}^{x}}\right)}{x}x→+∞limxln(ex+x)=x→+∞limxln[ex(1+exx)]=1+x→+∞limxln(1+exx)
limx→+∞[x3+x2+x+13−x2+x+1ln(ex+x)x]=limx→+∞(x3+x2+x+13−x2+x+1)−limx2+x+1x→+∞ln(1+xex)=limx→+∞x(1+1x+1x2+1x33−1+1x+1x2)−0=limx→+∞x(1+1x+1x2+1x33−1)−limx→+∞x(1+1x+1x2−1)=limx→+∞x[13(1x+1x2+1x3)]−limx→+∞x[12(1x+1x2)]=13−12=−16\begin{aligned}& \lim _{x \rightarrow+\infty}\left[\sqrt[3]{x^{3}+x^{2}+x+1}-\sqrt{x^{2}+x+1} \frac{\ln \left(\mathrm{e}^{x}+x\right)}{x}\right]\\=& \lim _{x \rightarrow+\infty}\left(\sqrt[3]{x^{3}+x^{2}+x+1}-\sqrt{x^{2}+x+1}\right)-\lim \frac{\sqrt{x^{2}+x+1}}{x \rightarrow+\infty} \ln \left(1+\frac{x}{\mathrm{e}^{x}}\right) \\=& \lim _{x \rightarrow+\infty} x\left(\sqrt[3]{1+\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}}-\sqrt{1+\frac{1}{x}+\frac{1}{x^{2}}}\right)-0 \\=& \lim _{x \rightarrow+\infty} x\left(\sqrt[3]{1+\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}}-1\right)-\lim _{x \rightarrow+\infty} x\left(\sqrt{1+\frac{1}{x}+\frac{1}{x^{2}}-1}\right) \\=& \lim _{x \rightarrow+\infty} x\left[\frac{1}{3}\left(\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}\right)\right]-\lim _{x \rightarrow+\infty} x\left[\frac{1}{2}\left(\frac{1}{x}+\frac{1}{x^{2}}\right)\right] \\=& \frac{1}{3}-\frac{1}{2}\\=&-\frac{1}{6} \end{aligned}======x→+∞lim[3x3+x2+x+1−x2+x+1xln(ex+x)]x→+∞lim(3x3+x2+x+1−x2+x+1)−limx→+∞x2+x+1ln(1+exx)x→+∞limx(31+x1+x21+x31−1+x1+x21)−0x→+∞limx(31+x1+x21+x31−1)−x→+∞limx(1+x1+x21−1)x→+∞limx[31(x1+x21+x31)]−x→+∞limx[21(x1+x21)]31−21−61
limx→0∫0x2f(t)dtx2∫0xf(t)dtf(0)=0,f′(0)≠0\begin{equation}
\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} f(t) \mathrm{d} t}{x^{2} \int_{0}^{x} f(t) \mathrm{d} t}\quad f(0)=0,f'(0)\ne 0
\end{equation}
x→0limx2∫0xf(t)dt∫0x2f(t)dtf(0)=0,f′(0)=0
bg
提示:使用了两次洛必达法则(标蓝部分),以及导数的定义(精妙之处)
limx→0∫0x2f(t)dtx2∫0xf(t)dt=limx→02xf(x2)2x∫0xf(t)dt+x2f(x)=limx→02f(x2)2∫0xf(t)dt+xf(x)=limx→04xf′(x2)3f(x)+xf′(x)=limx→04f′(x2)3f(x)x+f′(x)=4f′(0)3f′(0)+f′(0)=1\begin{aligned}& \lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} f(t) \mathrm{d} t}{x^{2} \int_{0}^{x} f(t) \mathrm{d} t}\\&={\color{blue} \lim _{x \rightarrow 0} \frac{2 x f\left(x^{2}\right)}{2 x \int_{0}^{x} f(t) \mathrm{d} t+x^{2} f(x)}} \\&=\lim _{x \rightarrow 0} \frac{2 f\left(x^{2}\right)}{2 \int_{0}^{x} f(t) \mathrm{d} t+x f(x)} \\&=\color{blue} \lim _{x \rightarrow 0} \frac{4 x f^{\prime}\left(x^{2}\right)}{3 f(x)+x f^{\prime}(x)} \\&=\lim _{x \rightarrow 0} \frac{4 f^{\prime}\left(x^{2}\right)}{\frac{3 f(x)}{x}+f^{\prime}(x)} \\&=\color{purple} \frac{4 f^{\prime}(0)}{3 f^{\prime}(0)+f^{\prime}(0)} \\&=1\end{aligned}x→0limx2∫0xf(t)dt∫0x2f(t)dt=x→0lim2x∫0xf(t)dt+x2f(x)2xf(x2)=x→0lim2∫0xf(t)dt+xf(x)2f(x2)=x→0lim3f(x)+xf′(x)4xf′(x2)=x→0limx3f(x)+f′(x)4f′(x2)=3f′(0)+f′(0)4f′(0)=1
设函数 f(x) 可导, 求极限 limx→x0x0f(x)−xf(x0)x−x0\begin{equation}
\text { 设函数 } f(x) \text { 可导, 求极限 } \lim _{x \rightarrow x_{0}} \frac{x_{0} f(x)-x f\left(x_{0}\right)}{x-x_{0}}
\end{equation}
设函数 f(x) 可导, 求极限 x→x0limx−x0x0f(x)−xf(x0)
bg
提示:使用导数的定义,尽力去凑导数定义式的形式,另外,值得注意的是:可导不代表着该函数在任意点处的极限都存在
limx→x0x0f(x)−xf(x0)x−x0=limx→x0x0f(x)−x0f(x0)x−x0−limx→x0xf(x0)−x0f(x0)x−x0=x0limx→x0f(x)−f(x0)x−x0−f(x0)=x0f′(x0)−f(x0)\begin{aligned}&\lim _{x \rightarrow x_{0}} \frac{x_{0} f(x)-x f\left(x_{0}\right)}{x-x_{0}}\\&=\lim _{x \rightarrow x_{0}} \frac{x_{0} f(x)-x_{0} f\left(x_{0}\right)}{x-x_{0}}-\lim _{x \rightarrow x_{0}} \frac{x f\left(x_{0}\right)-x_{0} f\left(x_{0}\right)}{x-x_{0}} \\&=x_{0} \lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-f\left(x_{0}\right) \\&=x_{0} f^{\prime}\left(x_{0}\right)-f\left(x_{0}\right)\end{aligned}x→x0limx−x0x0f(x)−xf(x0)=x→x0limx−x0x0f(x)−x0f(x0)−x→x0limx−x0xf(x0)−x0f(x0)=x0x→x0limx−x0f(x)−f(x0)−f(x0)=x0f′(x0)−f(x0)
经验总结
对于求极限问题,首先要判断所求极限的类型,若属于确定型,就按确定型中具体类型进行计算;若属于待定型,则看属于待定型中的“商型”、“积差型”还是“幂指型”,其中“商型”是最基础的待定型,“积差型”和“幂指型”都要经过转化最终转化为“商型”进行计算,其中,1∞1^∞1∞ 型除了可以转化为“商型”进行计算外,还可以利用第二重要极限的推广进行计算。确定所求极限的类型至关重要,只有知道所求极限的类型了,才可以按照相应类型的方法进行计算。
等价无穷小要义
当🥕→0🥕 \to 0🥕→0时
🥕相当于一个函数,最常见的的就是xxx了
🥕∼sin(🥕)∼tan(🥕)∼e🥕−1∼ln(1+🥕)∼arcsin(🥕)∼arctan(🥕)🥕 \sim \sin{(🥕)}\sim \tan{(🥕)}\sim {\color{red} e^{🥕}-1} \sim \ln(1+🥕)\sim \arcsin{(🥕)}\sim \arctan{(🥕)}
🥕∼sin(🥕)∼tan(🥕)∼e🥕−1∼ln(1+🥕)∼arcsin(🥕)∼arctan(🥕)
1−cos(🥕)∼12🥕2🥕−sin(🥕)∼16🥕31-\cos{(🥕)} \sim \frac{1}{2}🥕^2 \qquad \qquad 🥕-\sin{(🥕)} \sim \frac{1}{6}🥕^3
1−cos(🥕)∼21🥕2🥕−sin(🥕)∼61🥕3
1−cos(🥕)∼12🥕2⟹1−ncos(🥕)∼n2x2−n+1\color{blue} 1-\cos{(🥕)} \sim \frac{1}{2}🥕^2\Longrightarrow 1-n\cos(🥕) \sim\frac{n}{2}x^2-n+1
1−cos(🥕)∼21🥕2⟹1−ncos(🥕)∼2nx2−n+1
ln(🥕+1+🥕2)∼🥕\ln(🥕+\sqrt{1+🥕^2})\sim🥕
ln(🥕+1+🥕2)∼🥕
ln(1+🥕)∼🥕⟹log🥬(1+🥕)∼🥕ln🥬\color{blue}\ln(1+🥕)\sim 🥕 \Longrightarrow \log_🥬(1+🥕)\sim \frac{🥕}{\ln 🥬}
ln(1+🥕)∼🥕⟹log🥬(1+🥕)∼ln🥬🥕
e🥕−1∼🥕⟹🥬🥕−1∼🥕ln🥬\color{blue}e^{🥕}-1\sim 🥕 \Longrightarrow 🥬^{🥕}-1\sim 🥕\ln 🥬
e🥕−1∼🥕⟹🥬🥕−1∼🥕ln🥬
(1+🥕)🥬−1∼🥬🥕🥬🥕−1🥕∼ln🥬(1+🥕)^🥬-1 \sim 🥬🥕\qquad \frac{ 🥬^{🥕}-1}{🥕}\sim \ln 🥬
(1+🥕)🥬−1∼🥬🥕🥕🥬🥕−1∼ln🥬
加减法使用等价无穷小
口诀: 加不反,减不同,等价随便换
若 α∼α′,β∼β′\alpha \sim \alpha^{\prime}, \beta \sim \beta^{\prime}α∼α′,β∼β′, 且 limαβ=A≠−1\lim \frac{\alpha}{\beta}=A \neq-1limβα=A=−1, 则 α+β∼α′+β′\alpha+\beta \sim \alpha^{\prime}+\beta^{\prime}α+β∼α′+β′;
若 α∼α′\alpha \sim \alpha^{\prime}α∼α′, β∼β′\beta \sim \beta^{\prime}β∼β′, 且 limαβ=A≠1\lim \frac{\alpha}{\beta}=A \neq 1limβα=A=1, 则 α−β∼α′−β′\alpha-\beta \sim \alpha^{\prime}-\beta^{\prime}α−β∼α′−β′.
*等价无穷小的推导
此部分从属于紫晶计划·铁石 笔尖学术
泰勒展开式
泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒(Sir Brook Taylor)来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数(英语:Maclaurin series),以苏格兰数学家科林·麦克劳林的名字命名。所以,我们经常用的所谓的“泰勒展开式”实际上应该称为“麦克劳林级数”。
刚才差点又陷入误区,准备把无穷级数全部复习一遍,之后再来写这篇文章。实际上,很多东西,只有很少一部分是关键所在,理解了关键,就没有必要从头再来。况且,兴致是会消减的,学着学着就把写文章的激情磨光了,这可能也是多巴胺的规律之一吧。所以本文就从关键开始,从核心开始,以紫晶计划的要义“取其精华,弃其糟粕。”为指导,把我想表达的表达出来。
本文的主要依据是泰勒级数,泰勒级数的标准形式为:
∑n=0∞f(n)(a)n!(x−a)n=f(a)+f′(a)1!(x−a)+f′′(a)2!(x−a)2+f′′′(a)3!(x−a)3+⋯{\displaystyle \sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}}={\displaystyle f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+{\frac {f'''(a)}{3!}}(x-a)^{3}+\cdots }
n=0∑∞n!f(n)(a)(x−a)n=f(a)+1!f′(a)(x−a)+2!f′′(a)(x−a)2+3!f′′′(a)(x−a)3+⋯
以下为常见的麦克劳林展开式(不要怕,只需要记住五个我标注为紫色的\color{purple}\text{紫色的}紫色的,就足以推导出大多数等价无穷小):
bg
11−x=∑n=0∞xn=1+x+x2+⋯+xn+⋯∀x:∣x∣<1(1+x)α=∑n=0∞(αn)xn=1+αx+α(α−1)2!x2+⋯+α(α−1)⋯(α−n+1)n!xn+⋯∀x:∣x∣<1,∀α∈Cex=∑n=0∞xnn!=1+x+x22!+x33!+⋯+xnn!+⋯∀xax=exlna=∑n=0∞(xlna)nn!=1+xlna+(xlna)22!+(xlna)33!+⋯+(xlna)nn!+⋯∀xln(1−x)=−∑n=1∞xnn=−x−x22−x33−⋯−xnn−⋯∀x∈[−1,1)ln(1+x)=∑n=1∞(−1)n+1nxn=x−x22+x33−⋯+(−1)n+1nxn+⋯∀x∈(−1,1]loga(1+x)=ln(1+x)lna=1lna∑n=1∞(−1)n+1nxn=xlna−x22lna+x33lna−⋯+(−1)n+1nlnaxn+⋯∀x∈(−1,1]\begin{aligned}&{\displaystyle {\color{red}\frac {1}{1-x}}=\sum _{n=0}^{\infty }x^{n}=1+x+x^{2}+\cdots +x^{n}+\cdots \quad \forall x:\left|x\right|<1}\\&{\displaystyle{ \color{purple}(1+x)^{\alpha }}=\sum _{n=0}^{\infty }{\binom {\alpha }{n}}x^{n}=1+\alpha x+{\frac {\alpha (\alpha -1)}{2!}}x^{2}+\cdots +{\frac {\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}}x^{n}+\cdots }\quad{\displaystyle \forall x:\left|x\right|<1,\forall \alpha \in \mathbb {C} }\\&{\displaystyle {\color{purple} e^{x}}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots +{\frac {x^{n}}{n!}}+\cdots \quad \forall x}\\&{\displaystyle {\color{teal} a^{x}}=e^{x \ln a}=\sum _{n=0}^{\infty }{\frac {(x \ln a)^{n}}{n!}}=1+x \ln a+{\frac {(x \ln a)^{2}}{2!}}+{\frac {(x \ln a)^{3}}{3!}}+\cdots +{\frac {(x \ln a)^{n}}{n!}}+\cdots \quad \forall x}\\& {\displaystyle {\color{red} \ln(1-x)}=-\sum _{n=1}^{\infty }{\frac {x^{n}}{n}}=-x-{\frac {x^{2}}{2}}-{\frac {x^{3}}{3}}-\cdots -{\frac {x^{n}}{n}}-\cdots \quad \forall x\in [-1,1)} \\&{\displaystyle{\color{purple} \ln(1+x)}=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}x^{n}=x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}-\cdots +{\frac {(-1)^{n+1}}{n}}x^{n}+\cdots \quad \forall x\in (-1,1]} \\&{\displaystyle{\color{teal} \log_a(1+x)}=\frac{\ln (1+x)}{\ln a}=\frac{1}{\ln a}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}x^{n}=\frac{x}{\ln a}-{\frac {x^{2}}{2{\ln a}}}+{\frac {x^{3}}{3{\ln a}}}-\cdots +{\frac {(-1)^{n+1}}{n{\ln a}}}x^{n}+\cdots \quad \forall x\in (-1,1]} \\\end{aligned}1−x1=n=0∑∞xn=1+x+x2+⋯+xn+⋯∀x:∣x∣<1(1+x)α=n=0∑∞(nα)xn=1+αx+2!α(α−1)x2+⋯+n!α(α−1)⋯(α−n+1)xn+⋯∀x:∣x∣<1,∀α∈Cex=n=0∑∞n!xn=1+x+2!x2+3!x3+⋯+n!xn+⋯∀xax=exlna=n=0∑∞n!(xlna)n=1+xlna+2!(xlna)2+3!(xlna)3+⋯+n!(xlna)n+⋯∀xln(1−x)=−n=1∑∞nxn=−x−2x2−3x3−⋯−nxn−⋯∀x∈[−1,1)ln(1+x)=n=1∑∞n(−1)n+1xn=x−2x2+3x3−⋯+n(−1)n+1xn+⋯∀x∈(−1,1]loga(1+x)=lnaln(1+x)=lna1n=1∑∞n(−1)n+1xn=lnax−2lnax2+3lnax3−⋯+nlna(−1)n+1xn+⋯∀x∈(−1,1]
sinx=∑n=0∞(−1)n(2n+1)!x2n+1=x−x33!+x55!−⋯∀xcosx=∑n=0∞(−1)n(2n)!x2n=1−x22!+x44!−⋯∀xtanx=∑n=1∞B2n(−4)n(1−4n)(2n)!x2n−1=x+x33+2x515+⋯∀x:∣x∣<π2secx=∑n=0∞(−1)nE2n(2n)!x2n=1+x22+5x424+⋯∀x:∣x∣<π2arcsinx=∑n=0∞(2n)!4n(n!)2(2n+1)x2n+1=x+x36+3x540+⋯∀x:∣x∣≤1arccosx=π2−arcsinx=π2−∑n=0∞(2n)!4n(n!)2(2n+1)x2n+1=π2−x−x36−3x540+⋯∀x:∣x∣≤1arctanx=∑n=0∞(−1)n2n+1x2n+1=x−x33+x55−⋯∀x:∣x∣≤1, x≠±i{\displaystyle {\begin{aligned}\color{purple} \sin x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}&&=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-\cdots &&\forall x\\[6pt]\color{red} \cos x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}x^{2n}&&=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-\cdots &&\forall x\\[6pt]\color{purple} \tan x&=\sum _{n=1}^{\infty }{\frac {B_{2n}(-4)^{n}\left(1-4^{n}\right)}{(2n)!}}x^{2n-1}&&=x+{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}+\cdots &&\forall x:|x|<{\frac {\pi }{2}}\\[6pt]\color{red} \sec x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}E_{2n}}{(2n)!}}x^{2n}&&=1+{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}+\cdots &&\forall x:|x|<{\frac {\pi }{2}}\\[6pt]\color{red} \arcsin x&=\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&=x+{\frac {x^{3}}{6}}+{\frac {3x^{5}}{40}}+\cdots &&\forall x:|x|\leq 1\\[6pt]\color{red} \arccos x&={\frac {\pi }{2}}-\arcsin x\\&={\frac {\pi }{2}}-\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&={\frac {\pi }{2}}-x-{\frac {x^{3}}{6}}-{\frac {3x^{5}}{40}}+\cdots &&\forall x:|x|\leq 1\\[6pt]\color{red} \arctan x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}x^{2n+1}&&=x-{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}-\cdots &&\forall x:|x|\leq 1,\ x\neq \pm i\end{aligned} }}sinxcosxtanxsecxarcsinxarccosxarctanx=n=0∑∞(2n+1)!(−1)nx2n+1=n=0∑∞(2n)!(−1)nx2n=n=1∑∞(2n)!B2n(−4)n(1−4n)x2n−1=n=0∑∞(2n)!(−1)nE2nx2n=n=0∑∞4n(n!)2(2n+1)(2n)!x2n+1=2π−arcsinx=2π−n=0∑∞4n(n!)2(2n+1)(2n)!x2n+1=n=0∑∞2n+1(−1)nx2n+1=x−3!x3+5!x5−⋯=1−2!x2+4!x4−⋯=x+3x3+152x5+⋯=1+2x2+245x4+⋯=x+6x3+403x5+⋯=2π−x−6x3−403x5+⋯=x−3x3+5x5−⋯∀x∀x∀x:∣x∣<2π∀x:∣x∣<2π∀x:∣x∣≤1∀x:∣x∣≤1∀x:∣x∣≤1, x=±i
等价运算符
此部分为本人杜撰,结论不够准确严谨,但应付等价无穷小的推导应该绰绰有余。如有错误,还望指正🐰。
等价无穷小的不严格定义:
当x→0x\to 0x→0时,两个函数A(x),B(x)A(x),B(x)A(x),B(x)同时收敛于一个常数(英文:constant) CCC,那么这两个函数为x→0x\to0x→0时等价无穷小,记作A(x)∼B(x)A(x)\sim B(x)A(x)∼B(x)
下面介绍一下等价无穷小运算符"∼\sim∼"的运算规律,当x→0x\to 0x→0时,有如下运算规律:
-
if A(x)∼B(x),B(x)∼C(x)then A(x)∼C(x)if\ A(x)\sim B(x),B(x)\sim C(x)\quad then\ \color{red} A(x) \sim C(x)
if A(x)∼B(x),B(x)∼C(x)then A(x)∼C(x)
-
if A(x)∼B(x),C is a constant, then if\ A(x)\sim B(x),C\ is\ a\ constant,\ then \
if A(x)∼B(x),C is a constant, then
A(x)⋅C∼B(x)⋅C\color{red} A(x)\cdot C \sim B(x)\cdot C
A(x)⋅C∼B(x)⋅C
A(x)±C∼B(x)±C\color{red} A(x)\pm C \sim B(x)\pm C
A(x)±C∼B(x)±C
-
if A(x)∼a ,B(x)∼bif\ A(x)\sim a\ , B(x)\sim b
if A(x)∼a ,B(x)∼b
A(x)⋅B(x)∼a⋅b\color{red} A(x) \cdot B(x) \sim a \cdot b
A(x)⋅B(x)∼a⋅b
A(x)B(x)∼ab\color{red} \frac{A(x)}{ B(x)} \sim \frac{a}{b}
B(x)A(x)∼ba
A(x)+B(x)∼a+bif and only if limx→0A(x)B(x)≠−1\color{red} A(x) + B(x) \sim a +b\quad if\ and\ only\ if\ \lim_{x\to0}\frac{A(x)}{B(x)}\ne -1
A(x)+B(x)∼a+bif and only if x→0limB(x)A(x)=−1
A(x)−B(x)∼a−bif and only if limx→0A(x)B(x)≠1\color{red} A(x) - B(x) \sim a - b\quad if\ and\ only\ if\ \lim_{x\to0}\frac{A(x)}{B(x)}\ne 1
A(x)−B(x)∼a−bif and only if x→0limB(x)A(x)=1
值得注意的是,对于A(x)−B(x)\color{red}A(x)-B(x)A(x)−B(x)这种情形,往往会出现limx→0A(x)B(x)=1\displaystyle \lim_{x\to0}\frac{A(x)}{B(x)}= 1x→0limB(x)A(x)=1, 这个时候可以利用下文所讲的泰勒展开式来进行等价😎
-
当函数A(x)A(x)A(x)在x→0x\to 0x→0处,收敛于某一值,且其可以展开为如下的多项式a0+a1x+a2x2+⋯anxna_0+a_1x+a_2x^2+\cdots a_nx^na0+a1x+a2x2+⋯anxn,则:A(x)∼a0+a1x+a2x2+⋯anxn\color{red} A(x) \sim a_0+a_1x+a_2x^2+\cdots a_nx^nA(x)∼a0+a1x+a2x2+⋯anxn
推论1:这个和高阶等价无穷小有关,应该有更严谨的表达,但鄙人懒得翻了,就按我的意思表达吧。
When A(x)=a0+a1x+a2x2+⋯anxn, B(x)=b0+b1x+b2x2+⋯+bnxn thenlimx→0A(x)B(x)=a0+a1x+a2x2+⋯anxn=b0+b1x+b2x2+⋯+bnxn if n<mWhen\ A(x) = a_0+a_1x+a_2x^2+\cdots a_nx^n,\ B(x)=b_0+b_1x+b_2x^2+\cdots+b_nx^n\ then \\
\lim_{x\to 0}\frac{A(x)}{B(x)}=\frac{a_0+a_1x+a_2x^2+\cdots a_nx^n} {=b_0+b_1x+b_2x^2+\cdots+b_nx^n}\ \color{teal} if \ n<m
When A(x)=a0+a1x+a2x2+⋯anxn, B(x)=b0+b1x+b2x2+⋯+bnxn thenx→0limB(x)A(x)==b0+b1x+b2x2+⋯+bnxna0+a1x+a2x2+⋯anxn if n<m
推论2:泰勒展开式移项A(x)−a0−a1x−⋯ajxj∼aj+1xj+1+⋯anxn\color{red} A(x)-a_0-a_1 x- \cdots a_j x^j \sim \color{blue} a_{j+1}x^{j+1}+\cdots a_n x^nA(x)−a0−a1x−⋯ajxj∼aj+1xj+1+⋯anxn
等价无穷小·推导Plus+Pro
泰勒展开式等价无穷小
由于较高阶次的项,考试也不会考,写下来也麻烦的紧,这里就利用最高次幂为二或三的展开式来推导常见的无穷小。
sinx∼x∼x−x36arcsinx∼x∼x+x36tanx∼x∼x+x33arctanx∼x∼x−x33cosx∼1∼1−x22ex∼1∼1+x∼1+x+x22ax∼1∼1+xlna∼1+xlna+(xlna)22ln(1+x)∼x∼x−x22loga(1+x)∼xlna∼xlna−x22lna(1+x)a∼1∼1+ax∼1+ax+a(a−1)2x211+x∼1∼1−x∼1−x+x211−x∼1∼1+x∼1+x+x2{\displaystyle {\begin{aligned}
\color{purple} \sin x\quad&\sim x &&\sim x-{\frac {x^{3}}{6}}\\[6pt]
\color{purple} \arcsin x\quad&\sim x &&\sim x+{\frac {x^{3}}{6}}\\[6pt]
\color{purple} \tan x\quad&\sim x &&\sim x+{\frac {x^{3}}{3}}\\[6pt]
\color{purple} \arctan x\quad&\sim x &&\sim x-{\frac {x^{3}}{3}}\\[6pt]
\color{purple} \cos x\quad&\sim 1 &&\sim 1-{\frac {x^{2}}{2}}\\[6pt]
\color{purple} e^x\quad&\sim 1 &&\sim 1+x &&\sim 1+x+{\frac {x^{2}}{2}}\\[6pt]
\color{teal} a^x\quad&\sim 1 &&\sim 1+x \ln a &&\sim 1+x \ln a+{\frac {(x \ln a)^{2}}{2}} \\[6pt]
\color{purple} \ln(1+x)\quad&\sim x &&\sim x-{\frac {x^{2}}{2}}\\[6pt]
\color{teal} \log_a(1+x)\quad&\sim\frac{x}{\ln a} &&\sim\frac{x}{\ln a}-{\frac {x^{2}}{2{\ln a}}}\\[6pt]
\color{purple} (1+x)^a\quad&\sim 1 &&\sim 1+ax &&\sim 1+ax+\frac{a(a-1)}{2}x^2 \\[6pt]
\color{purple} \frac{1}{1+x}\quad&\sim 1 &&\sim 1-x &&\sim 1-x + x^2 \\[6pt]
\color{purple} \frac{1}{1-x}\quad&\sim 1 &&\sim 1+x &&\sim 1+x + x^2 \\[6pt]
\end{aligned}}}
sinxarcsinxtanxarctanxcosxexaxln(1+x)loga(1+x)(1+x)a1+x11−x1∼x∼x∼x∼x∼1∼1∼1∼x∼lnax∼1∼1∼1∼x−6x3∼x+6x3∼x+3x3∼x−3x3∼1−2x2∼1+x∼1+xlna∼x−2x2∼lnax−2lnax2∼1+ax∼1−x∼1+x∼1+x+2x2∼1+xlna+2(xlna)2∼1+ax+2a(a−1)x2∼1−x+x2∼1+x+x2
这些是原始的等价无穷小,亦可以看作出题者的后台,亦可以看作出题者的后台,#000000,#000000
根据等价运算符的运算规律,特别是推论2,我们可以很容易得到以下推论:
x∼sin(x)∼tan(x)∼ex−1∼ln(1+x)∼arcsin(x)∼arctan(x)x \sim {\color{blue} \sin{(x)}}\sim \tan{(x)}\sim {\color{blue} e^{x}-1} \sim \ln(1+x)\sim {\color{blue} \arcsin{(x)}}\sim \arctan{(x)}
x∼sin(x)∼tan(x)∼ex−1∼ln(1+x)∼arcsin(x)∼arctan(x)
sinx−x∼−x36arcsinx−x∼x36tanx−x∼x33arctanx−x∼−x33cosx−1∼−x22ex−1∼x∼x+x22ax−1∼xlna∼xlna+(xlna)22ln(1+x)−x∼−x22loga(1+x)−xlna∼−x22lna(1+x)a−1∼ax∼ax+a(a−1)2x2−x1+x∼−x∼−x+x2x1−x∼x∼x+x2{\displaystyle {\begin{aligned}
\color{purple} \sin x-x\quad&\sim -{\frac {x^{3}}{6}}\\[6pt]
\color{purple} \arcsin x-x\quad&\sim {\frac {x^{3}}{6}}\\[6pt]
\color{purple} \tan x-x\quad&\sim {\frac {x^{3}}{3}}\\[6pt]
\color{purple} \arctan x-x \quad&\sim -{\frac {x^{3}}{3}}\\[6pt]
\color{purple} \cos x-1\quad&\sim -{\frac {x^{2}}{2}}\\[6pt]
\color{purple} e^x-1\quad&\sim x &&\sim x+{\frac {x^{2}}{2}}\\[6pt]
\color{teal} a^x-1\quad&\sim x \ln a &&\sim x \ln a+{\frac {(x \ln a)^{2}}{2}} \\[6pt]
\color{purple} \ln(1+x)-x\quad&\sim -{\frac {x^{2}}{2}}\\[6pt]
\color{teal} \log_a(1+x)-\frac{x}{\ln a}\quad&\sim-{\frac {x^{2}}{2{\ln a}}}\\[6pt]
\color{purple} (1+x)^a-1\quad&\sim ax &&\sim ax+\frac{a(a-1)}{2}x^2 \\[6pt]
\color{purple} \frac{-x}{1+x}\quad&\sim -x &&\sim -x + x^2 \\[6pt]
\color{purple} \frac{x}{1-x}\quad&\sim x &&\sim x + x^2 \\[6pt]
\end{aligned}}}
sinx−xarcsinx−xtanx−xarctanx−xcosx−1ex−1ax−1ln(1+x)−xloga(1+x)−lnax(1+x)a−11+x−x1−xx∼−6x3∼6x3∼3x3∼−3x3∼−2x2∼x∼xlna∼−2x2∼−2lnax2∼ax∼−x∼x∼x+2x2∼xlna+2(xlna)2∼ax+2a(a−1)x2∼−x+x2∼x+x2
等价无穷小·推导 50
通过核心公式(泰勒展开式中标紫的地方):sinx,tanx,ex,ln(x+1)\sin x,\tan x, e^x, \ln(x+1)sinx,tanx,ex,ln(x+1),加上简单的加减乘除,三角函数运算,对数运算,以及上文的等价运算,可以很方便的推导出其他的等价无穷小,太累了,过程省略,给你张图,慢慢推导吧